The algebraic matroid of a Hadamard product of linear spaces and a new proof of Laman's Theorem

Daniel Irving Bernstein

Massachusetts Institute of Technology

dibernst@mit.edu

Motivation

Definition

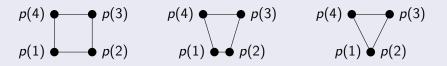
A bar and joint framework in d dimensions consists of

- a graph G, and
- a function $p: V(G) \to \mathbb{R}^d$.

Such frameworks can be rigid or flexible.

Example

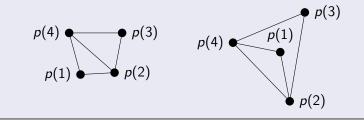
Let G be the graph on vertex set $V = \{1, 2, 3, 4\}$ with edges $\{12, 23, 34, 14\}$. Below we give three functions $p : V \to \mathbb{R}^2$. The first two frameworks are flexible and the third one is rigid.



A graph G is generically rigid in \mathbb{R}^d if for every generic $p: V \to \mathbb{R}^d$, the resulting framework is rigid. Such a graph is *minimal* if removing any edge destroys this property.

Example

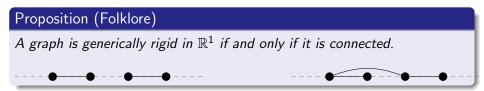
Let G be the graph on vertex set $\{1, 2, 3, 4\}$ with all edges, aside from $\{1, 3\}$. For generic $p : \{1, 2, 3, 4\} \rightarrow \mathbb{R}^2$, the resulting framework is rigid.



Motivating question

Question

Which graphs are (minimally) generically rigid in \mathbb{R}^d ?



Theorem (Pollaczek-Geiringer 1927, "Laman's Theorem")

A graph G on n vertices is minimally generically rigid in \mathbb{R}^2 if and only if

- Ⅰ G has 2n 3 edges, and
- **2** every subgraph H of G on n' vertices has at most 2n' 3 edges.

Such graphs are called Laman graphs.

Our main result will have Laman's theorem as an easy consequence.

Algebraic matroids

Each subset $S \subseteq E$ defines a coordinate projection $\pi_S : \mathbb{C}^E \to \mathbb{C}^S$.

Definition

Let $V \subseteq \mathbb{C}^E$ be an irreducible variety. A given $S \subseteq E$ is

- independent if $\dim(\pi_S(V)) = |S|$,
- **2** spanning if dim $(\pi_{S}(V)) = \dim(V)$, and
- \bigcirc a basis if S is both independent and spanning.

The common combinatorial structure described by any one of these set systems is called the *algebraic matroid underlying* V.

Let $E = \{1, 2, 3\} \times \{1, 2, 3\}$ and $V \subseteq \mathbb{C}^E$ be the variety of 3×3 matrices of rank ≤ 1 . Then $S := \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 3)\}$ is spanning, but not independent.

$$\pi_{5}(V) = \left\{ \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & \cdot \\ \cdot & \cdot & x_{33} \end{pmatrix} : x_{11}x_{22} - x_{21}x_{22} = 0 \right\}$$

Given a pair of integers $d \le n$, the Cayley-Menger variety of n points in \mathbb{R}^d , denoted CM_n^d , is the affine variety embedded in $\mathbb{C}^{\binom{[n]}{2}}$ as the Zariski closure of the set of possible squared pairwise euclidean distances between n points in \mathbb{R}^d .

Example

Let d = 2. Then the *ij* coordinate of CM_n^2 is parameterized as $d_{ij} = (x_i - x_j)^2 + (y_i - y_j)^2$.

Observation

A graph G = ([n], E) is generically rigid in \mathbb{R}^d if and only if E is spanning in CM_n^d . Moreover, G is minimally generically rigid if and only if E is a basis of CM_n^d .

- Algebraic matroid underlying determinantal varieties useful in matrix completion (Király, Theran, Tomioka 2015)
- Combinatorial characterization of algebraic matroid underlying rank-two determinantal variety (B. 2017)
- Sufficient condition for independence in algebraic matroid underlying higher determinantal varieties (Tsakiris 2020)
- Algebraic matroid of the FUNTF variety (B., Farnsworth, Rodriguez 2020)
- Algebraic matroids with graph symmetry (Király, Rosen, Theran 2013)
- Identifiability of latent tree mixtures and phylogenetic networks (Hollering and Sullivant 2020)
- Many other examples in rigidity theory

Matroids

Definition

A matroid is a pair $\mathcal{M} = (E, \mathcal{I})$ where E is a set and $\mathcal{I} \subseteq 2^{E}$ satisfies

- $\textcircled{O} \ \mathcal{I} \text{ is nonempty,}$
- 2) if $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$, and
- S if *I*, *J* ∈ *I* with |I| = |J| + 1, then there exists *e* ∈ *I* such that *J* ∪ {*e*} ∈ *I*.

Elements of \mathcal{I} are called the *independent sets of* \mathcal{M} .

Definition

The rank function $r_{\mathcal{M}} : 2^E \to \mathbb{Z}_{\geq 0}$ of a matroid $\mathcal{M} = (E, \mathcal{I})$ maps $S \subseteq E$ to |I| where I is the largest independent subset of S.

Definition

A spanning set of $\mathcal{M} = (E, \mathcal{I})$ is a set $S \subseteq E$ of maximum rank. A basis is a spanning independent set.

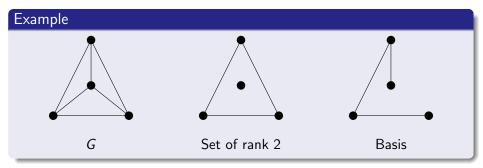
Example: graphic matroids

Definition

Let G = (V, E) be a graph. In the graphic matroid of G,

- $I \subseteq E$ is independent if (V, I) is a forest and a basis if a tree.
- The rank of S ⊆ E is |V| − c where c is the number of connected components of (V, S).

Note: when $G = K_n$, this is the algebraic matroid underlying CM_n^1 .



Matroids from submodular functions

Definition (Edmonds and Rota 1966)

Let $f: 2^E \to \mathbb{Z}$ be increasing and submodular, i.e. satisfies

•
$$f(A) \leq f(B)$$
 whenever $A \subseteq B \subseteq E$

$$f(A \cup B) + f(A \cap B) \leq f(A) + f(B).$$

Define $\mathcal{M}(f)$ to be the matroid on E where $I \subseteq E$ is independent iff for all $I' \subseteq I$, $I' = \emptyset$ or $|I'| \leq f(I')$.

Example (Pym and Perfect 1970)

If r_1, \ldots, r_d are rank functions of matroids M_1, \ldots, M_d on ground set E, then I is independent in $\mathcal{M}(r_1 + \cdots + r_d)$ iff $I = I_1 \cup \cdots \cup I_d$ where I_j is independent in M_j .

Example (Lovász and Yemini 1982)

Let r be the rank function of the graphic matroid underlying K_n . Then $\mathcal{M}(2r-1)$ is the algebraic matroid underlying CM_n^2 .

Given $x, y \in \mathbb{C}^E$, the Hadamard product of x and y, denoted $x \star y$, has entries given by $(x \star y)_e := x_e y_e \text{ for all } e \in E.$

Given varieties $U, V \subseteq \mathbb{C}^{E}$, the Hadamard product $U \star V$ of U and V is

$$U \star V := \overline{\{x \star y : x \in U, y \in V\}}.$$

Theorem (Main theorem)

Let $U, V \subseteq \mathbb{C}^{E}$ be linear spaces and let $r_{U}, r_{V} : 2^{E} \to \mathbb{Z}_{\geq 0}$ be the rank functions of their algebraic matroids. Then the algebraic matroid underlying $U \star V$ is $\mathcal{M}(r_{U} + r_{V} - 1)$.

Theorem (Lovász and Yemini)

Let r be the rank function of the algebraic matroid underlying CM_n^1 . Then the algebraic matroid underlying CM_n^2 is $\mathcal{M}(2r-1)$.

proof sketch:

- A generic $\mathbf{d} \in CM_2^n$ can be expressed as $d_{uv} = (x_u x_v)^2 + (y_u y_v)^2$.
- Under the change of variables $z_u := x_u + iy_u$ and $w_u := x_u iy_u$, this becomes $d_{uv} = (z_u z_v)(w_u w_v)$.
- Let $L \subseteq \mathbb{C}^{\binom{[n]}{2}}$ be the linear space parameterized as $d_{uv} = z_u z_v$
- Note $CM_n^2 = L \star L$
- The algebraic matroid underlying L is the graphic matroid of K_n
- The result then follows from our main theorem

We will identify a graph G with its edge set. Number of vertices and connected components will be denoted v(G) and c(G).

Theorem (Pollaczek-Geiringer 1927)

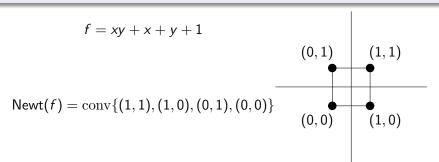
A graph G is independent in the algebraic matroid underlying CM_n^2 if and only if each subgraph H of G satisfies $|H| \le 2\nu(H) - 3$

proof sketch:

- Rank function r of graphic matroid is r(G) = v(G) c(G)
- Lovász and Yemini's theorem implies that if G independent in CM_2^n and H is a subgraph, then $|H| \le 2r(H) - 1 \le 2\nu(H) - 3$
- If a subgraph H of G satisfies |H| ≥ 2v(H) 2, then some connected component H' of H satisfies |H'| ≥ 2v(H') 2
- Since H' connected, 2v(H') 2 > 2r(H') 1

Given a complex polynomial f, the corresponding *tropical hypersurface*, trop(f), is the polyhedral fan consisting of the codimension-one cones in the normal fan of the Newton polytope of f.

The tropicalization of a variety $V \subseteq \mathbb{C}^E$, trop(V), is the intersection of all tropical hypersurfaces corresponding to polynomials f vanishing on V.



Theorem (Bieri, Groves, Bogart, Jensen, Speyer, Sturmfels, Thomas)

The tropicalization of an irreducible complex variety is the support of a pure balanced polyhedral fan that is connected through codimension 1.

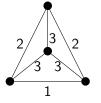
Proposition (Yu 2016)

Tropicalization preserves the algebraic matroid structure of a variety.

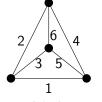
More precisely, given any irreducible variety $V \subseteq \mathbb{C}^{E}$ and $S \subseteq E$, $dim(\pi_{S}(V)) = dim(\pi_{S}(trop(V)))$

Let \mathcal{M} be a matroid on ground set E. A weighting $w : E \to \mathbb{R}$ is called an \mathcal{M} -ultrametric if each $e \in E$ appears in a *w*-minimum basis. The set of all \mathcal{M} -ultrametrics, denoted $\tilde{\mathcal{B}}(\mathcal{M})$, is called the *Bergman fan of* \mathcal{M} .

Let \mathcal{M} be the graphic matroid of K_4



An \mathcal{M} -ultrametric



Not an \mathcal{M} -ultrametric

Proposition

If \mathcal{M} is the algebraic matroid of linear space $L \subseteq \mathbb{C}^{E}$ then trop $(L) = \tilde{\mathcal{B}}(\mathcal{M})$.

Daniel Irving Bernstein (MIT)

Theorem

Let $U, V \subseteq \mathbb{C}^{E}$ be linear spaces and let $r_{U}, r_{V} : 2^{E} \to \mathbb{Z}_{\geq 0}$ be the rank functions of their algebraic matroids. Then the algebraic matroid underlying $U \star V$ is $\mathcal{M}(r_{U} + r_{V} - 1)$.

proof sketch:

- If $U, V \subseteq \mathbb{C}^{E}$ are varieties, then $\operatorname{trop}(U \star V) = \operatorname{trop}(U) + \operatorname{trop}(V)$.
- So if *M* and *N* are the algebraic matroids underlying *U* and *V*, trop $(U \star V) = \tilde{\mathcal{B}}(M) + \tilde{\mathcal{B}}(N)$.
- Hard part: for $I \subseteq E$, show that there exists a cone of $\tilde{\mathcal{B}}(M) + \tilde{\mathcal{B}}(N) \subseteq \mathbb{C}^{E}$ whose coordinate projection onto \mathbb{C}^{I} is |I|-dimensional iff I independent in $\mathcal{M}(r_{U} + r_{V} 1)$.

Question

Can we generalize the main theorem by replacing "linear spaces" with some larger family of irreducible varieties?

Cannot allow arbitrary varieties. If V can be parameterized by monomials, then $V \star V = V$.

Conjecture

Let L_1, \ldots, L_d be linear spaces whose underlying matroids have rank functions r_1, \ldots, r_d . Then the algebraic matroid underlying $L_1 \star \cdots \star L_d$ is $\mathcal{M}(r_1 + \cdots + r_d - d + 1)$.

Question

What other varieties with interesting algebraic matroids can be expressed as Hadamard products?

Thank you for your attention!

https://arxiv.org/abs/2003.10529